Report on the NASA FFT Project

Feasibility study, Software Design, Layout and

Simulation of a Two-Dimensional Fast Fourier

Transform Machine for use in Optical Array

interferometry

Valentin Boriakoff, Wei Chen

/27/

Worcester Polytechnic Institute

July, 1990

NASA Grant Number NAG 5 1138

Principal Investigator: Prof. Valentin Boriakoff

(NASA-CP=-14/422) FracsI™ILiTy sTuhy,
SUETHALT D0ST00, LAYIOT ANG STHULATION NE A
TWU=LIMTNSIONAL FAST TUURTER TRANSFORM
MACHING FOP UGS IN TPTICAL ARRAY uncl as
LMTTOP 0 MU Ty (Wurcostor Puolytecnnic 53/50 030247y

N9i-i7uRr>

Contents

1 Introduction

2 The Subcells
2.1 Edge Triggered D Flip-Flop
2.2 The Multiplexer
2.3 The 24x24-Bit Parallel Multiplier
2.4 The Chip Timing Generator CONTR
2.4.1 Notation of Control Signals
2.4.2 Detail Description of the CONTR Implementation . . .

2.5 The Hidden Bit of the IEEE Floating Point Number

3 Modification of the Original Design
31 The ROM i e
32 The FPSS o i e

33 The NORM i

4 Simulation

5 The Signal Protocol
5.1 Operational Signals

52 The ChipPinout

6 Applications of the SAFT64

50

List of Figures

10

11

12

13

14

15

16

17

18

19

Architectural Description of SAFT64 11
Logic diagram of the edge triggered D flip-flop 12
Block diagram of the 32ETD 14
Logic diagram of the multiplexer 15
Block diagram of the 32MUXD 16
Logic diagram of the 24x24-bit multiplier 18
Block symbol of the CONTR 20
Internal operational timing 21
2bit counter. 24
Logic diagram of the CONTR 25
IEEE floating point number standard 26
Logic diagram of the ZERODETECTOR 27
Overflow and underflow of two number’s multiply 29
Logic diagram of the exponent handler 30
Block symbol for the FPSS 32
Schematic for the OPSELECT 35
Schematic for the NEG.HANDLER 36
Logic diagram for the modified exponent 40
Control signals and simulation labels 42

20

21

22

I/O timing

The chip’s pinout

.............................

.........................

Configuration of using SAFT64 to do 64-point FFT

List of Tables

1 Truth table for the control signals of the OP.SELECT 33

2 Truth table for the NEG.HANDLER 34
3 Another form of the data flow chart 43
4 Truth table of thestepsize 46
5 Truth table of the diagonal selection 47

1 Introduction

The NASA-Cornell University-Worcester Polytechnic Institute FFT chip based
on the architecture of the systolic FFT computation as presented in-the
paper “FFT Computation with Systolic Arrays, A New Architecture,” by
V.Boriakoft [BORSS] is implemented into an operating device design.through
the agency of the NASA Grant NAG 5-1138. The kernel of the system, a
systolic inner-product floating point processor, was designed to be assembled
into a systolic network that would take incoming data streams in pipeline
fashion and provide an FFT output at the same rate, word by word. It has -
been thoroughly simulated for proper operation, and it has passed a com-
prehensive set of tests showing no operational errors. The chip is labeled
SAFT64 (Systolic Array FFT - 64 point).

The following are the “black box” specifications of the chip, they conform to
the initial requirements of the design as specified by NASA.

Chip technology: CMOS 2micron (A = 1um).

Chip embodiment: 132 pin ceramic package, to be fabricated through MO-
SIS.

Chip area: 7.9mmz9.2mm.

Power supply voltage: 5.0v.

Input and output data format: IEEE Standard for Binary Floating-Point

7

Arithmetic (ANSI/IEEE Standard 754-1985), 32 bits.

Internal format: Changed from IEEE standard for computational purposes,
returned to IJEEE standard at the chip output.

Input clock: 250 ns period with duty cycle from 30% to 70%. Simulation
showed proper operation for clock periods from 190ns to 400ns.

Input Reset: must be applied at least four clock cycles before the first valid
data word arrived at the input and has to be held high until after the first
clock positive rise. It should be dropped before the second positive rise of
the clock.

Input data timing: data must be present and valid 4ns before the correspond-
ing clock rise.

Input data sequence: the first data word A, present on the input data lines
must be the real part of the input data word, and the second data word A;
must be the imaginary part of the input data word. A, should be present
4ns before the first clock positive-going transition, A; must be present 4ns
before the second clock positive transition, 250ns after the first clock positive
transition. The C, input must be applied 4ns before the next positive clock
transition (500ns), and C; must follow C, 4ns before the following positive
clock transition (750ns). All of these data words must be present for one

clock cycle. New A, and A; values should follow C; immediately. After the

input data sequence (64 complex words) is complete a new sequence can start
at the next positive-going clock transition.

Output sequence: three positive clock transitions after the transition where
the input A, is applied A, appears at the output without modifiction. Here
we count the first clock transition as the one that took A, into the chip. After
A, appears, it is followed by A; one clock period later. Yet one clock period
later the result of the computation real number R appears at the output.
One clock later I is presented at the output. See the timing diagrams.

Step size: Specifies the size of the step of the W coefficients in the ROM,
it is a variable that depends on the location of the particular chip in the
processor array. See the text for setting values.

Diagonal specification: Two input lines LOWER and MAIN specify which
matrix diagonal is being computed in the multiplication. If the value of
LOWER and MAIN are 11, the upper diagonal is selected; 01 means main
diagonal; 10 means lower diagonal; and 00 is undefined.

Number of inner-product processors required: Based on the initial paper the
number of processors required is P = 3log,(N), where N is the (binary)
number of points in the transform, in this case 64, hence P = 18.

Total number of external memory locations required: The data requires

M = 2N — 4log,(N) + 2 memory locations (from the initial paper), hence

M = 106. An additional number of N one-bit memory locations are required
for the Reset signal.

In addition to our work, initial work was carried out by a Cornell University
graduate student (now graduated), Peter DelVecchio, whose collaboration we
gratefully acknowledge. His PhD thesis work consisted in the development
of hardware verification by software methods, he applied these methods to
the verification of those sections he designed for this project.

In the following sections, section 2 describes the five subcells. Their high level
function description, logic diagrams and simulation results are presented.
Section 3 deals with modification of the design. Since some errors have been
found in the ROM, some correction were made. At the mean time, the
original design would not be changed. Section 4 discusses simulation meth-
ods. Because a four-stage pipeline structure has been used, simulating such a
structure is more difficult than an ordinary structure. Section 5 explains chip
signal protocols and chip pinout. and Section 6 presents a concrete example
of how to utilize the SAFT64 array processors to implement a 64-point FFT.

All top level simulation results are included in the Appendix.

10

Architectural Description

INPUTCM INPUTCE
2341 /i, 23+1* INPUTAM INPUTAE 8 8
[cmIn] [amIn | [Asmﬂ [cem l
CMIN2 AMINZ CEIN2
ay
24+1 032 c31
023 WGEN 030
o0 c?1
z
MP1
1 24
23+1 8
A A
A 48+1
[
X X
SHIFT-MANTISSA H—Pee— ™ SHIFT=-EXPONENT
49+1} 49+1,'/
50+1 zerob
FPSS ras _.}_
V' 50 9
l MDEiw [7 EDFE.]
NORMLIZATICN TTTTTT11T1
2 — reset
' p-—
> T CONTR
timing generator | fl°°k
QUT-DELAY
y out
AMIN# =~ A mantissa input . .
CMIN# = C mantissa input = 24x24-bit multiplier subcell shift
AEIN# = A exponent input .
CEIN# = C exponent input - multiplexor welght generator

MP# = mantissa product
ES# = exponent sum

MDEL = mantissa delay
EDE]l = exponent delay

= 9-bit sublractor

®
®
(:> = 9-bit adder
©

WGEN

FPSS floating point

[]
n
X
—
™
—
)

D flip-flop

Figure 1: Architectural Description of SAFT64

11

2 The Subcells

Subcells described here are basic components in the SAFT64 chip. Some of
them are repeatedly used in the chip layout. Since most data path widths
are 32 bits, for a control signal, 32 driving loads are typical. Therefore,
evenly distributing a drive signal is an important issue. All subcells have
been optimized in the meaning of speed and silicon area. Those cells may be

used in the future project as standard cells.

2.1 Edge Triggered D Flip-Flop

An edge triggered D flip-flop called ETD is the most common component

[MANS84] in the chip.

CLK | D
Figure 2: Logic diagram of the edge triggered D flip-flop

It is used as either a data latch or a time delay buffer. At the beginning

12

a level triggered D flip-flop was adopted. Since a level triggered D flip-flop
may change its output status at any time as long as the clock is asserted, it‘
makes chip timing difficult. But the level triggered D flip-flop occupied less
silicon area than a edge triggered D flip-flop . Here, in our case, silicon area
is not a very important issue because the chip uses a 79mm x 81mm frame,
there is a plenty of space left for future use. Anyhow, the silicon area for the
D flip-flop was minimized. The output of the D flip-flop will follow the input
at the time a rising CLK edge is received. This protocol is defined by chip
operation timing (see section 2.4 Chip Timing). Logic diagram for edge
triggered D flip-flop is shown in Figure 2 and schematic of the 32ETD is in
Figure 3. Every 8 flip-flops are driven by one big inverter which is, in turn,
driven by a CLk signal. Since the CLK delay to each flip-flop is the same

time, there is no clock skew problem here.

2.2 The Multiplexer

The MUXD is another frequently used subcell in the chip. It is a simple mul-
tiplexer. There are two inputs called A and B, one output O and one control
select A, when the select A signal is high, the output of the multiplexer is

following input A, otherwise, it follows input B. Logic diagram and schematic

13

ETD

ETD

ETD

ETD

ETD

[aamm

ETD

ETD

ETD

ETD

ETD

1

J

I

Figure 3: Block diagram of the 32ETD

14

.
CLK

of the MUXD are shown in Figure 4 and 5 respectively. A driver was added
in the output level to improve the load capability. Simulation showed that
if this driver was not used, the MUXD would be very slow, sometimes it
would not work at all if the loads were too heavy. The same consideration
was applied to the MUXD control signal as ETD, every 8 multiplexers are
driven by a big inverter. According to the RSIM simulation, the delay time

from applying 1 to the select A to getting the input A at output is 3.6ns.
vdd O

Figure 4: Logic diagram of the multiplexer

15

t t |

T

MUXD MUXD MUXD MUXD MUXD MUXD MUXD MUXD
IT T FFE F% I j I] f
sSa
sab
a b a p ab a bT DT b a b¢ a bT
MUXD MUXD MUXD MUXD MUXD MUXD MUXD MUXD
RS RS [T T T
Sa
sab
a bT a bT a bT a bT a bT E} bT a bT a bT
MUXD MUXD MUXD MUXD MUXD MUXD MUXD MUXD

I

1

Ty oy

1

MUXD MUXD MUXD MUXD MUXD MUXD MUXD MUXD
H } J i ! ! 1
s5a
sab
ab a p ab a b a b a b a b a b

Figure 5: Block diagram of the 32MUXD

16

o] i

&

=

CTRL

2.3 The 24x24-Bit Parallel Multiplier

This 24 bits multiplier is the biggest subcell in the chip. It has 24376 tran-
sistors. The design of the multiplier is based on Joseph Lee’s work [JOE87]
which was done in Hughes Research Laboratories in 1987. The advantage
of this approach is that design issues are minimal, and the layout is highly
modular. A logic diagram of the 24x24-bit parallel multiplier is shown in
Figure 1.3.1.

As we can see from Figure 6, the entire multiplier consists of three subcells:
a full adder, an AND gate, and a half adder. For simplicity, all the half
adders were provided by connecting a carry input of the full adder to the
ground level. For better speed performance the last stage in Figure 6 is a
24-bit carry look-ahead adder instead of a ripple carry adder. Every four
pairs of the input bits constructs a carry group. Every four carry of such
groups was sent to a carry generator. Thus, there are three levels of the
carry generators, the first level was used for carry generation of four inputs,
the second level was for sixteen inputs or caries of four groups, and the third
level was for twenty four inputs. The final RSIM simulation shows that the

maximum multiplication time for two 24-bit numbers is 135 ns.

17

az23 az22 a2l 0 rrreesseeiaacan a2 al a0

. b23 b22 b2l ccrreerereeeeess b2 b1 b0
a23b0 a22b0 321b0 a2b0 alb0 a0bo
a23bl a22bla21p alb
h
a23b2
fa
£
C 24-bit Carry Look-ahead Addoer
L i l l i l ¢ \ \ / Y
P47 P46 P45 P44 et P?2€ P25 P24 P23 Pp22-c*--- P2 P1 PO

Figure 6: Logic diagram of the 24x24-bit multiplier

18

2.4 The Chip Timing Generator CONTR

Timing sequences of the internal operation were generated by a on chip timing
generator called CONTR. A four-stage pipelined structure is implemented
and controlled by those timing sequences. Furthermore, an inner-product
function X = A% B+ C is calculated by such a structure. In subsection 2.4.1
the notation of control signals and their operational sequences are presented.

Subsection 2.4.2 focuses on the detailed description of the implementation.

2.4.1 Notation of Control Signals

Figure 7 is a block symbol for the CONTR. There is only one input to
the CONTR - an external clock. The outputs of the CONTR are Al, A2,
C1, C2, T1, T2, T3, M1, M2, M3, M4, NEXT, and REAL. See Figure 1,
Chip Architectural Description, for the meaning and position of those control
signals,

Since data flow for the mantissa on the left side is exactly parallel to that of
the right side for exponent, the control signals for both sides are identical. A1l
is a clock signal for storage registers AMIN1 and AEIN1; A2 is for AMIN2
and AEIN2; C1 is a clock signal for storage registers CMIN1 and CEIN1; C2
is for CMIN2 and CEIN2; T1 is a clock signal for storage registers MP1 and

ES1; T2 is for MP2 and ES2; T3 is a clock signal for time delay registers

19

Cl C2 M1 M2 M3 M4 T3 NEXT REAL CLOCK

LT

reset
e——
CONTR
1
timing generatcr delay
clock

Figure 7: Block symbol of the CONTR

MDEL and EDEL; T4 is a clock signal for LDEL; M1 is a ” select A ” signal
for multiplexers MIN.MUX and EIN.MUX; M2 is a “ select A ” signal for
MP_MUX2

and ES_MUX2; M3 is also a “ select A ” signal for MP_MUX1 and ES_.MUX1;
M4 is a select A signal for OUT_MUX; NEXT is a clock signal for subcell
the ROM; and REAL is a control signal for ROM’s REAL. Here some special
attention must be paid to NEXT and REAL. REAL is used to select a real
weight or imaginary weight in ROM. When REAL is 1, a real weight is
selected; otherwise, when REAL is 0, an imaginary weight is selected. The
timing sequences were drawn from the graphic explanation of the data flow
through the system [DEL90]. Some minor modification was made on his data
flow chart, please see Section 3. From his data flow chart, it follows that a real

weight or an imaginary weight must be repeated twice for a complex number

20

CLK N N NN R NN B O

ain{] ar X

Cin

Cl

3 []

M1

I

ce2 ﬁ ﬁ m
1
S

w | 0 — - 1 1
VI N I I N R i B

M4 ,

NEXT

REAL —_l
R

1] R R L

Figure 8: Internal operational timing

21

inner-product, i.e. at the first clock a real weight is output from the ROM, at
the second clock the output of the ROM is changed to an imaginary weight,
at the third clock the same imaginary weight must be kept on the output of
ROM, and at the fourth clock the output of the ROM is changed back to
the previous real weight. It appears that a memory location has to contain
two weights, when REAL is 1, the output of the ROM is a real weight, while
REAL is 0, the output is an imaginary weight of the same location. If there
is a rising edge transition on the CK of ROM, the ROM will step to the next
location. Therefore, the external clock cannot be directly connected to the
CK of the ROM. This CK signal must be driven by a signal called NEXT
which is generated by the CONTR. Through the data flow chart it is easy
to see that T1, T2, and T4 are equal to CLOCK; and Al is the same as A2.
The CLOCK is an internal signal which has several gates delay time related
to the external clock. This delay is artificially introduced to compensate for
the delay generated by the 2-bit counter. More details are described in the
next subsection. The chip timing sequences are plotted in Figure 8.

Those are the timing sequences necessary for internal operation. The
timing sequences of input and output data as well as chip external control

signals are described in detail in Section 5.

22

2.4.2 Detail Description of the CONTR Implementation

Basically the CONTR consists of two parts, a 2-bit counter and logic net-
works. Two edge triggered D flip-flops, two transmission gates and two in-
verters are employed to construct a 2-bit counter. Figure 9 is a logic diagram
of the 2-bit counter. The 2-bit counter must be triggered at the rising edge
of the clock signal. When RESET is high, the outputs of the counter are 00,
independent of the changing of CLK. When RESET goes low, on each rising
edge of CLK, the outputs of the counter are 01, 10, 11, and 00 respectively.
Two drivers are added between the D flip-flops and transmission gates to
increase the driving capability of D flip-flops. Other signals could be derived
from the output of the 2-bit counter and the clock signal. Equations (1-13)
show such relations among the output of the 2-bit counter and the clock
signal.

The logic equations for the internal functions are :

A, = CLK *0Qy; (1)
Ay, = Ay (2)
Ci = CLK *Qy; (3)
C, = CLK +Q; (4)
T, = CLK; (5)

23

Q1

Qlb

D —| >—Joo —E
ETD ETD
[v CLK —Doqoob ClLK

RESET

Tg =

T3 =

M1 =

M2:

M3=

M4:

NEXT =

REAL =

CLK;

Figure 9: 2-bit counter

CLK * Qo;

Qo + Q1;

Qo

Qo'

?

?

QoezorQy;

Ql'

M;.

)

(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)

Figure 10 shows a logic diagram of the CONTR. The upper part is the

logic networks for the above control signals and the lower part is a 2-bit

counter.

The delay unit depends on the time delay specified by the 2-bit counter. Ac-

24

NEXT REAL M4 Cl Al c2 T3 M2 M3 M1

4 v
M g M 4
AN Vg) —
ey MM 1
Q1 Clb Q0 00b
2-BIT COUNTER DELAY
RESETT CLOCH

Figure 10: Logic diagram of the CONTR

tually, the 2-bit counter has a 8.4 ns delay . Therefore, the internal CLOCK
is 8.4 ns later than the external clock CLK. Each control signal has been

buffered so that bigger loads may be driven.

2.5 The Hidden Bit of the IEEE Floating Point Num-
ber

The IEEE floating point number format contains a hidden bit which is the
most significant bit of the mantissa [IEEE85]. For convenience of reading,

the IEEE floating point number format is redrawn in Figure 11.

25

sign bit exponent field (8 bits) mantissa fleld (23 bits)
implicit decimal point

l
[E7 E6 EOI r M22 M21 i iiiiin i a e MOJ

Figure 11: IEEE floating point number standard

As we can see, there are a 23-bit mantissa (b22...b0), a 8-bit exponent (
b23...b30) and a sign bit (b31) for mantissa. The decimal point of the float-
ing point number is between b23 and b22. For a normalized IEEE floating
point number, the most significant bit must be 1, which is not represented
in the IEEE floating point number format, and it must be generated by the
hardware. The most significant bit of the mantissa is located to the left of
the implicit decimal point. The exponent is offset by 127;¢, such an expo-
nent is called biased one. We assume that all floating numbers input to the
SAFT64 are normalized to the IEEE floating point number. That means in
most cases the hidden bit is a 1 except that the input number is a 0. When
the input is a normalized zero, the exponent of this number must be zero.
Therefore, a zero detector must be inserted in front of input latch AMIN1

and CMIN1. This zero detector is not drawn in Figure 1 for clarity in the

26

chip architecture. The function of the zero detector is quite simple, if 8-bit
exponent is 0, then sets the hidden bit (MSB of mantissa) to zero, other-

wise, it sets it to one. Figure 12 shows a logic diagram of the zero detector.

zeerA

Figure 12: Logic diagram of the ZERO_DETECTOR

3 Modification of the Original Design

Some errors have been found in Delvecchio’s design layout when the RSIM
simulation is run for the ROM, the FPSS and the NORM subcells. The
SHIFT subcell works perfectly. There were too many details to be considered
at the design stage, some errors were be unavoidable. Those errors could only

be found at the simulation of the integrated block.

27

3.1 The ROM

There were two obvious errors in the subcell ROM. The most significant
bit of the ROM is "032” which corresponds to the hidden bit of an IEEE
floating-point number. It should be a 1 for a normalized IEEE floating-point
number, and it should be a 0 if the value of the number is zero. In practice,
the output of this bit is inverted. To correct this mistake, an inverter was
added in the last stage of the bit 032.

The second error was the output of the exponent. As we know, the ex-
ponent of the IEEE standard floating-point number is biased, and this bias
value (offset) for single precision is a decimal value of 127. the range of this
exponent is from 1 to 254. When two IEEE floating-point numbers multiply,
their exponents are added. The range of new exponent is from 2 to 508 which
is beyond the IEEE exponent range 1 to 254. To fit this range into the IEEE
exponent range any exponents which are less than 128 or greater than 381
must be eliminated, see Figure 13.

If the exponent of the ROM coefficients was not biased, we would be able
to avoid such an exponent range mapping problem. Unfortunely, the true
exponent output of the ROM was designed as biased one by Devecchio. To
solve this problem, a subtractor is inserted after the two exponents are added.

This subtractor always subtracts a decimal value of 127 from the exponent

28

508 In the IEEE floating point number standard

381 e = 127 + E; 1 <= e <= 254;

//////, -126 <= E <= 127.
/////// When two numbers multiply, their exponents
254 /// are added, 1.e.
\\ el + e2 = 127 + E1 + 127 + E2 = Eg
\\\\\\\ To express this new exponent in a 8-bit word,
128 \\\

128 <= Eg <= 381, and

Fp - Fs - 127.

Figure 13: Overflow and underflow of two number’s multiply

sum E, and the result is called the normalized exponent E,. Figure 14 shows
a modified block symbol of the exponent adding unit. The subtractor actu-
ally is a 9-bit adder. One input of the 9-bit adder is E,; another one is a 2’s
complement number of the decimal number 127. If the Carry of the adder is
1 (indicated a positive result), So_s are sent to the NORM; if the Carry is 0
(a negative and an underflow), Ss 7 are set to 11, at this time the exponent
becomes an exponent that is greater than 256. The purpose of setting Sg,7 to
11 is because the NORM has only one exception handling capability; if the
exponent is greater than 256, set the output exponent vector to 0 to indicate
an overflow. Thus, if the normalized exponent is less than zero, then the

subcell NORM will set this floating point number to zero. The reason for

29

this is quite straightforward; the number is too small to be presented by any
other number except zero. If the normalized exponent is greater than 381,.
the output of the most two significant bits of the subtractor are automatically
11 which indicates an overflow. In turn, this nine bits exponent is fed to the
NORM. The NORM should treat this exponent as an infinite or overflow,

but for original design reasons it sets this floating-point number to zero.

032 o031
023 WGEN 030

o0 c24

Figure 14: Logic diagram of the exponent handler

Another problem with the ROM is that the exponent stored was actual ex-
ponent plus three. This was resulted from the fact that a floating-point
multiplication and an addition will shift the decimal point left at different
stages. Since the decimal point is implied in the data, the shift operation
is simply relative to the most significant bit of data instead of the decimal
point. After A x B has been carried out, the implied decimal point is on the
left of the most significant bit. While A x B + C is calculated, the implied

decimal point of C is on the right of the most significant bit of C. If two

30

numbers with differently decimal point positions are to be added together,
this fact leads to a computational error. For more details see Section 3.3 The

NORM.

3.2 The FPSS

Figure 15 is a block symbol of the FPSS. Notice that one of inputs is inverted,
FPSSRD, since this input was connected to the output of SHIFT and one
of these output was inverted. This is a very important factor when design
the OP_SELECT in the following section. The functions of FPSS are to: 1)
convert inputs to the correct representation according to current operations
- OP_SELECT; 2) add two numbers together - FA52; 3) change 2’s com-
plement number back to sign magnitude number if the result is negative -
NEG_HANDLER; and 4) set the exponent of the floating point number to

zero if the result (mantissa) is zero - ZERO_HANDLER.

Three points of the original design in FPSS have been modified. First,
all control signals for multiplexers were changed from low effective to high
effective; second, the outputs of adder FA52 are high effective; third, the
logic of converting a negative result back to sign magnitude number in

NEG_HANDLER has been changed. Some modifications shown in the fol-

31

EIb

.
FPSSL FPSSRE 1 s> SUBTRAT
49 49
OP_SELECTOR
49) 49 ¥ I SUBTRACTION
Mlp 7/ m2p
FA52 (49-bit adder)

SUM49b 51

L4

NEG_HANDLFR

!

ZERO_HANDLER

S1 is sign of input A;

SHE SHM sign

Vo]
&)

'ii
C
-
x

S2 is si

Figure 15: Block symbol for the FPSS

32

SUBTRACT | S2 | S1 | SUBTRACTION | OP_.CTR2 OP_CTR1
0 0|0 0 0 1
0 0|1 1 0 0
0 110 1 1 1
0 111 0 0 1
1 0} 0 1 1 1
1 011 0 0 1
1 1[0 0 0 1
1 111 1 0 0

Table 1: Truth table for the control signals of the OP_SELECT

lowing figures are just for logic simplicity. When two 49-bit numbers are
added together the result may be a 50-bit number. Here in FPSS a subtrac-
tion A — B (A > 0 and B > 0) is implemented by converting B (49 bits not
including sign bit) into 2’s complement number, and then added it with A.
The sign bits of both A and B do not participate in the adding operation.
The sign of the result is determined by bit49 SUM49, signs of A and B (
S1 and §2), and what operation is being done (addition or subtraction).

Table 1 and 2 illustrate such relations among the above logic variables.

As shown in Table 2 , when a true subtraction is carried out, the bit 49 of

33

SUBTRACTION | SUM46b | S1 SIGN | NEG.CTR
0 0 0 0 0
0 0 1 0 0
0 1 0 1 0
0 i 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 0 1
1 1 1 1 0

Table 2: Truth table for the NEG_HANDLER

the 49-bit adder FA52 determines the sign of result which is already in sign
magnitude format. Therefore, even though a result is negative, only bit 0 to
bit 48 need to be inverted.

Figure 16 is a logic implementation of Table 1. Two control signals OP_CTR1
and OP_CTR2 are used to control two exor vectors. When OP_CTRI or 2
is logic zero, the outputs of the exor vectors remain the value of the inputs.
When OP_CTR1 or 2 is logic one , the output of the exor 49-bit vectors might
be opposite to the inputs. Initinally, a transmission gate was used instead of
an exor gate, but it could not be driven by the SHIFT subcell. It then was

replaced by an exor gate before the final simulation. Figure 17 shows how

34

SUBTRACT S2

FPSS FPSSRb l

49 49

OP CTR1 OP_CTR2 ;

Ll

Y

—

SUBTRAL, [ONU? CTR2 OF CTR!

Figure 16: Schematic for the OP_SELECT

a sign is determined and when a data is converted back to sign magnitude
representation. Here SUM49b is the most significant bit of the 49-bit adder
FA52. If SUBTRACTION has been done by the FA52, the sign of the final
result depends on SUM49. If SUM49 is zero, then the result is negative and
needs to be converted back to the sign magnitude format; if SUM49 is one,
no conversion needs to be done. If a additon (SUBTRACTION = 0) has

been done, the sign of the final result depends on Si.

35

SUM49p SUBTRACTION S1

4

SUM49 SUM48—Oi
gi
a

b

49-bit Adder
NEG CIRL

504
¥

Figure 17: Schematic for the NEG_HANDLER

3.3 The NORM

As has been stated in the description of the IEEE floating point standard
(Section 2.5), the implied decimal point is located between b22 and b23.
In this section a more detailed discussion about the decimal point which is

shifted after a multiplication and an addition is given.

Since a normalized IEEE floating point number is greater or equal to 1
and less than 2,0, the product of such two numbers is greater or equal to 1
and less than 4;0. The decimal point will be shifted as in the following binary

representation:

1.b22b21b20".b1b0 * 1.b22b21b20n.b}b0 = b47b45.b45b44b43n.b1b0.

36

Notice that the product is a 48-bit word because two multiplicands are 24-bit
words. In order to calculate a complex number inner-product, four multipli-

cations and four additions are needed:

RoutzAr*Wr—Ai*‘/Vi_*'Cr

thzAr*Wi+Ai*IVr+Ci-

Let I, be A, x W; and I, be A; x W, . Then,

L+, = bazbae.basbasbas...brbo + bazbag.basbaabas...brbo =
b4sb47b4s-b4sb44b43-ublbo; and

IL=hL+1L,+C;= baobsgbarbas-basbaabas...brbo.

Thus, the decimal point must be shifted left by three at the last stage. Now
the problem was that in the internal stage the decimal point is not fixed,
extra care must be taken by the designer. What DeVecchio did was that
three was added to the exponent of the weight, it was equal to pre-shifting
the decimal point left by three. In the internal stage any input number could
be treated as if it had only one digit to the left of the decimal.

In practice, some difficulties arose. After adding three to the exponent,

I, or I, become z.zbsrbsebss...bibo, where z.z did not exist in hardware,

37

but we treaded them as if they exist in the written representation. Thus,
Il + Iz = Z.b4gb47b46...b]_bo = Is. When I3 + C,’, the decimal point should be

in the same position, i.e.

$.b43b47b46...b] bo

+ 1.bagbar...bibo

then, the SHIFT will move the smaller one of I, and C; right according to
the difference of two exponents. Since the z bits do not exist, it is equivalent
to having I5 shifted left one more bit, thus generating an error. Therefore, a
zero must be added in the most significant bit of I3 to keep the decimal in the
same position. Because the inputs of the SHIFT are two 49-bit ports, there
is no more space for such an extra bit. Thus, I; or R; must be truncated
off one more bit so that a zero was added as the most significant bit. This
was accomplished by wiring bit 49 of I3 or R to bit 48 of the input port of
SHIFT , and other bits were shifted one more bit to the right also. Notice
that the bit 49 of I5 or Rj is always zero.

After a zero was inserted in I3 or Hs, the calculation of Is or Ra plus C; or
C, was correct. But pre-shifting the decimal point three bits still has an-
other problem, i.e. shifting the decimal point three bits reduced the dynamic
ranges of additions. If there was no pre-shifting, I3 or R3 would have three
digits to the left of the decimal point. Thus the addition of Is or Rs plus C;

38

or C, would be

I2Z.ZTTTTTLITT...CTTT Is or R;

+ 00l.zzzzzzz — C; or C. (2.5.1)

rrr2.2TETTTLTTT...cxze +—— final result I or R

Then, three was added to the exponent to indicate that the decimal point
was always shifted three bits. Obviously, the location of the decimal point
would be fixed and easy to be found. If there were zeros to the right of the
decimal point after adding three to the exponent, cell NORM would be able

to handle it.

Let us now look at the case where pre-shifting has been done. I3 or Rs

plus C; or C, becomes

0.crrrrrzTT...LTTT — Is or Rj

+ l.zzzzzze — C; or C, (2.5.2)

zz.2rrzrTLTTT...cxz — final result I or R

There were two digits to the left of the decimal point, which meant that
to convert the final result to the normalized IEEE floating point number,
there was one more bit to be shifted to the right though we had concluded

that the decimal point must be fixed in the position one digit left in any

39

internal stages. In other words, the final result was bigger than we expected.
Comparing calculation 2.5.1 with 2.5.2, we could see that pre-shift decreased
the dynamic range of additions. In calculation 2.5.1 there were three digits to
the left of the decimal point, to put C; ’s decimal point in the same position
two zeros were implicitly inserted, which ensured that the final result was
less than 10,0 or four digit to the left of the decimal point (see DeVecchio’s
thesis, Section 2.7). In calculation 2.5.2, there was only one digit to the
left of the decimal point and the most significant bit of C; was always one, a
carry may be generated, which led to the fact that the final result was bigger

than it should be.

Figure 18: Logic diagram for the modified exponent

To solve this problem, a 1 was added on the exponent before it was fed to
NORM as shown in Figure 18. As we had accepted the pre-shifting decimal
point, there should be no trouble in accepting a post-shifting of the decimal
point. In reality, a 9-bit adder was used between FPSS and NORM, and

40

adding one or not adding it depended on the ZERO_HANDLER in the FPSS
subcell. If the output of the ZERO_HANDLER was not zero, a 1 was added

to the exponent; otherwise, a 0 was added.

4 Simulation

The simulation was done using RSIM. Since a four-stage pipeline structure
was employed, it made the simulation more difficult. The only way we could
do it was to put simulation labels at the outputs of each component to track
what was going on. Each label represented a test point. At each point we
see a vector consisting of several bit components. We use a bit to express
a particular component of a vector in the following paragraph. The labels
used in the simulation are shown in Figure 19.

There are four input vectors, exponent of input A - INPUTAE, mantissa
of input A - INPUTAM, exponent of input C- INPUTCE, and mantissa of
input C - INPUTCM. INPUTAE is a 8-bit vector which is used to express
an exponent of an IEEE floating point number. INPUTAM is a 24-bit vec-
tor which containes the sign bit of an IEEE floating point number in bit
INPUTAM?23 and mantissa from bits INPUTAM22.0. The same protocol is

applied to INPUTC. INPUTAM and INPUTAE are called as input port A,

41

Control SIgnals and Simulatlion Labels

2347 MINPUTCH 23+1 | {INPUTAM 8
"'} ; ’& &~
, c1
[cmm }*- I AMINlJ‘— Al Al AEINI

c2 |
CMIN2 S AMIN? AEIN2

MAIN ST2 ST1 STO

b
b LOWERJ{ ‘L J{ — M1
2441 32 031 8
N L1023 WGEN 030
//‘
oC 024
e |1 =
NEXT REAL reset 8
T\
X
FARMM| ¥yg+41 M3
I Backy]
a b 7
b a
Y M2 T2
MP2
SHIFT &smm‘ 4941
SHIFT-MANTISSA [SHIFT-EXPONENT
P
FPSS }-—A e
FPSS 55+34 20 9
T3 T3
—*{ N"Il [EDEL
NORMM "“""\? *
e | NORME control
ontro
A NORMLTZATION ——
o signal
24 I, a — Simulation
i R == i e v
OUT-DELAY i
‘l’ oUT

Als&A2 Cl c2 M1 M2 M4 T1eT2 T3 NEXT REAL

R

reset

CONTR -———
Civing generalor clock
.(———.

Figure 19: Control signals and simulation labels

42

CLK | IN ROME | suM | PAE | BAE | SHI | SHK | SHE | NORE

MuL | RomMm | PRO | PAM | BAM | SHR | SHL | sHM | NORM | OUT
0 Ay Al we Ry x b X X x x
1 A; y w; Ry Ry R, X X X x
2 Cy A w; I R, Ry R, Ry Ry x
3 c; c! W, I, I I Ry~ Cr | R4 X x
L) el Arll wy! Ry? Iy Iy I I Iy R Ay
5 4t A,-" wyl R | Ry | Ry I c; 14 R A
¢ PRI IR w,l ' | R | Ry | R | R | Ry 1 R'
7 c;! A,-" wyl It n? It Ryt | oot Ry! 1 r

Table 3: Another form of the data flow chart
and INPUTCM and INPUTCE are called as input port C. Since both real
and imaginary numbers are input through port A and C, we use A, and A;
to indicate the real part of A and the imaginary part of A. The same rule
was applied to C. Table 3 is another form of the data flow chart, where z
indicated a "don’t care” item, a superscript number indicated a sequence of

the input data, and superscript ’ indicated a normalized item.

5 The Signal Protocol

In this section some basic timing for external signals are introduced, and
those timing relations are derived from the RSIM simulation, they may

change slightly after the chips are tested. Another part of this section is

43

the pinout of the SAFT64. There are total 132 pins on the chip, of which
112 pins have been used, 20 pins are left unused for future extensions or chip

test pins. The timing described here does not include differential pat delays.

5.1 Operational Signals

There are eight signals which control the operations of the chip, and there
are three data ports on the chip.

1. CLOCK (input): this signal is provided by the users. The typical clock
period is 250ns with duty cycle from 30% to 70%. Simulation showed proper
operation for clock periods from 200ns to 400ns.

2. RESETI (input): this signal sets the weight generator WGEN to the first
memory location and the timing generator CONTR to start state. It must
be applied at least four clock cycles before the first valid data word arrives
at the input port A or C and it has to be held high until the first data is
stable at the data port, i.e. it may be turned off 4 ns after the first data is

applied. It should be dropped before the second positive rise of the CLOCK.

3. RESETO (output): an output signal to the next chip. It is just a four-
clock cycle delay of the RESETI. When many chips are cascaded together,

the external signal Reset goes to the first chip, and the RESETO of the first

44

7% s W e N e N e s I s O Sy Uy S

Aln (R X B " A X R D—

Cin : I:) i 1 Crl Ea Cr2
—>{}£;?-4J" —4>1L<—-—>4 hﬁi :
: 5 T :
- ()~ !
sto | :
ST1 [7 i
ST2 E
MAIN f :
LOWEﬂ E

P00 OO

' ! !
1) g !

5 55

1
-

Minimum valid data time is 4 ns

Previous data off time is € ns

High for at least 4 clock poriods
The time of Reset off mus: be in the interval of the first data

The input appears at output afier 4 ciock cycles it is input to the chip,

and this time 1s the same as @

Same as @
Same as @
Same as @

Here CLK is an internal clock which is 8.2 ns later than external clock.

Other signals must be keot corstant durig the operation. The above ia an

example, thestep size is 4, and the main diagonal weight is selected.

Figure 20: 1/0 timing

45

ST2 | ST1 | STO | STEP SIZE

0 0 0 1
0 0 1 2
0 1 0 4
0 1 1 8
1 0 0 16
1 0 1 32

1 1 0 undefined

1 1 1 undefined

Table 4: Truth table of the step size
chip will be connected to the RESETI of the second chip, etc, (See Figure 22.
4. Step size STO, ST1 and ST2 (input) : the three control lines identify the
position of the chip in the processor array and move the memory pointer of

the weight generator to the proper location. Table 4 shows the functions of
those signals. STO0, ST1 and ST2 must be connected to GND or Vdd during

chip operation.

5. Weight Diagonal specification MAIN and LOWER (input): the com-
bination of those two signals is to determine which diagonal of the weight

ROM is used in the current calculation. There are three diagonals in the

46

MAIN | LOWER | DIAGONAL
1 0 main
0 1 lower
1 1 upper
0 0 undefined

Table 5: Truth table of the diagonal selection

ROM, the MAIN, the LOWER and the UPPER. Table 5 shows how a diago-
nal is selected by those two signals. MAIN and LOWER must be connected

to GND or Vdd during the chip operation.

6. Data Port A (input): is a 32-bit data input port for digital signals.
Here the so-called digital signal means the digitized data obtained from A/D
sampling and some filtering real and imaginary words in sequence.

7. Data Port C (input): this 32-bit data port accepts the data generated by
the next SAFT64 chip (See Section 6).

8. Data Port O (output): outputs the results of calculating AxW +C by
the chip under consideration.

We assume that all data input to port A and C are normalized IEEE floating

point numbers. The output of the port O is a normalized IEEE floating

47

point number also. Notice that the SAFT64 does not fully support the
IEEE floating point standard; NAN and positive and negative Infinite are
not included in the possible outputs of the Port O. The input data must be
valid 4ns before each clock rise, see Figure 20.

Data input sequence: the first data word, A,, must be a real number and the
second data word, A;, must be an imaginary number, both A, and A; are the
real and imaginary parts of the first input data point. The C, input must
be applied before the next positive clock transition and C; must follow C; at
the next clock transition. All of these data words must be present for one
clock cycle and must be valid 4ns before the rising edge of the clock. New
A, and A; values can follow C; immediately. After the input data sequence
(64 complex words) is complete a new sequence can start immediately.
Data output sequence: after A, is applied four clock positive transitions, A,
appears at the output without modification. Here we count the first clock
transition as the one that took A, into the chip. After A, appears, it is
followed by A; one clock period later. Yet another clock period later the
result of the computation real number R appears at the output. One clock

later I is presented at the output.

48

5.2 The Chip Pinout

There are total 132 pins on the chip, of which 112 pins are used. Pin 1, Pin
67, Pin 101 and Pin 112 are ground GND; Pin 34, Pin 100, Pin 110 and Pin
124 are positive 5 volt power supply Vdd. Port A occupies Pin 2 to Pin 33;
Port C uses Pin 43 to Pin 66 and Pin 125 to Pin 132; and Port O carries Pin
68 to 99; Pin 35 to 42 are control signals; and Pin 102 to 127 are test pins

which are not used by the users. Figure 21 shows this configuration.

Sa AM22 AM20 AM4 AM? pMOAEY AE2 AEOD GND
3332 3130 14 13171130 ¢ 4 3 2 1
vdd —»t 34 132 fe— CE7
CLOCK —{ 35 131 |-— CE6
STO — 3¢
STl —3= 37 125 t=— CEO
ST2 — 38 124 ~<— vad
123 |— Al
MIAN —>] 39 122 a1
RESETI —> 40 120 b= C2
RESETO 41 120 b= M1
LowEr —>| 42 SAFT64
cMo —» 43 117 —» M4
115 b= NEXT
cM2 —>45 114 =11
—>1 46 113 >
112 [*<— GND
—
CM20 =™ 63 110 [*— vdd
CM21 —™ 64 -
CM22 ™1 65 11%21 e GND
Sc T 66 100 |- vdd
67686970 8687 88 BS 302132 ag 9/ 98 99

P 1T Ly

GND OMO OM2 OM18 OM?C CM22 OE)CH10FES0E6CEY So

Figure 21: The chip’s pinout

49

6 Applications of the SAFT64

A configuration using SAFT64 chips to implement a 64-point FFT is shown
in Figure 22. Eighteen SAFT64 chips are used. All control signals have been
wired to proper terminals. Since the chips in different levels have different
delay time which has been fulfilled by internal delay registers, and the delay
time of those registers is determined by STO, ST1 and ST2. Therefore,

connection of the chips is quiet straightforward and simple.

50

DATA In
LA o A 0 A 0
1EEE SAFT64 SAFT64 SAFT64
c 30 c 30 c 0
Reset T
444 31 }<
A o) A (0] > A 0
SAFT64 SAETEA SAFT64
c 14 et 14] | C | Y
1
44 15 1<
A 0 A 6] A o}
SAFT64 SAFTE4 SAFT64
< {6 F—l c”@j cfep— o
|
A 0 I C A o]
SAFT64 SAFTE4 SAFT64
c 2 sz = c 0
L A L L:l»——
A 0 A 0 A 0
SAFT64 SAFTEA SAFTé64
o) C c 0
I ' S w——
{ I
A 0 1 A Q 1 A o]
0 SAFT64 ={::::}>. SAY 64 SAFT64
—>c C C ‘ 1EEE
[I — L___-._J DATA Out

e 1 us ! A 7] SAFT64 o
]

A o} Special CLKA CLK
cik4 | sarTes ——

Delay reaqister is

TRESETI l RESETO
SAFT64 is driven by CLK{4

Figure 22: Configuration of using SAFT64 to do 64-point FFT

51

References

[BORSS] Boriakoff, V.,”FFT Computation with Systolic Arrays, a New
Architecture”, Submitted for publication by V. Boriakoff, Worcester Poly-
technic Institute, 1988.

[MAN84) Mano, M. Morris Digital Design, Printice Hall, New Jersey,
1984.

[JOE87] Kamark, Joefery, ” A High Density 828 Parallel Multiplier”,
IEEE transctions on Circuit and System, vol , 1988.

[DEL90) DelVecchio, P. E. The Design and Formal Verifcation of an
Integrated Circuit for Use in a Floating-Point Systolic Array Fast Fourier
Transform Processor, Master Thesis, Cornell University, Ithaca, New York,
1990.

[IEEE85] IEEE Standard for Binary Floating-Point Arithmetic, (ANSI/IEEE
std 754-1985), New York: The Institute of Electrical and Electronics Engi-

neers.

52

Appendix

The following is a simulation file which was produced by the RSIM simula-
tion. All simulation labels n the file are coresponding to the labels in Table 3.
For ezample, a MUL in Table 3 corespones to “multin” in the simulation file;
a FAM in the table means “farmm” in the file. Since the width of the paper
is not wide enough to hold so many simulation labels, abbreviations of those

labels have to be used in Table 3.

53

